Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Org Lett ; 26(15): 2913-2917, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38569099

RESUMO

C-C σ-bond cleavage and reconstruction is a significant tool for structural modification in synthetic chemistry but it remains a formidable challenge to perform on unstrained skeletons. Herein, we describe a radical addition-enabled C-C σ-bond cleavage/reconstruction reaction of unstrained allyl ketones to access various functional indanones bearing a benzylic quaternary center. The synthetic utility of this method has been showcased by the first total synthesis of carexane L, an indanone-based natural product.

2.
Commun Biol ; 7(1): 199, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368473

RESUMO

Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.


Assuntos
Ferroptose , Radical Hidroxila , Camundongos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Fenóis/farmacologia , Floroglucinol/farmacologia , Mamíferos
3.
Sci Bull (Beijing) ; 69(3): 345-353, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044193

RESUMO

The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and pharmaceuticals. In this endeavour, as a photocatalyst- and metal-free process, the electron donor-acceptor (EDA) strategy has not been well explored. Here we report an approach to aliphatic carbon-hydrogen bond diversification through an EDA complex constituted by HCl and SIV=O groups. As an efficient hydrogen atom transfer (HAT) reagent, chlorine radical can be produced via a proton-coupled electron transfer process in this system. Based on this unusual path, a photo-promoted versatile aliphatic C-H functionalization is developed without photo- and metal-catalysts, including thiolation, arylation, alkynylation, and allylation. This conversion has concise and ambient reaction conditions, good functional group tolerance, and substrate diversity, and provides an alternative solution for the high value-added utilization of bulk light alkanes.

4.
J Med Chem ; 66(24): 16464-16483, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38088333

RESUMO

Cancer is a major threat to the lives and health of people around the world, and the development of effective antitumor drugs that exhibit fewer toxic effects is an important aspect of cancer treatment. PARP inhibitors are antitumor drugs that target pathways involved in DNA-damage repair. The currently approved PARP inhibitors include olaparib, niraparib, rucaparib, talazoparib, fuzuloparib, and pamiparib. Hematological toxicities associated with the simultaneous inhibition of PARP-1 and PARP-2 have limited the clinical applications of these drugs. The present review introduces the necessity for research on the development of selective PARP-1 inhibitors from the perspective of structural and functional mechanisms of PARP-1 inhibition. A review of recently reported selective PARP-1 inhibitors provides the foundation for exploring novel strategies for designing selective PARP-1 inhibitors from the perspective of structure-activity relationships combined with computer simulations.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Reparo do DNA , Neoplasias/tratamento farmacológico
5.
Eur J Med Chem ; 260: 115781, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669595

RESUMO

Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Fator de Iniciação 4G em Eucariotos , Serina-Treonina Quinases TOR , Neoplasias/tratamento farmacológico , Fator de Iniciação 4E em Eucariotos
6.
Food Chem Toxicol ; 177: 113844, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244599

RESUMO

Silk fibroin (SF) has excellent biocompatibility and biodegradability as a biomaterial. The purity and molecular weight distribution of silk fibroin peptide (SFP) make it more suitable for medical application. In this study, SFP nanofibers (molecular weight ∼30kD) were prepared through CaCl2/H2O/C2H5OH solution decomposition and dialysis, and adsorbed naringenin (NGN) to obtain SFP/NGN NFs. In vitro results showed that SFP/NGN NFs increased the antioxidant activity of NGN and protected HK-2 cells from cisplatin-induced damage. In vivo results also showed that SFP/NGN NFs protected mice from cisplatin-induced acute kidney injury (AKI). The mechanism results showed that cisplatin induced mitochondrial damage, as well as increased mitophagy and mtDNA release, which activated the cGAS-STING pathway and induced the expression of inflammatory factors such as IL-6 and TNF-α. Interestingly, SFP/NGN NFs further activated mitophagy and inhibited mtDNA release and cGAS-STING pathway. Demonstrated that mitophagy-mtDNA-cGAS-STING signal axis was involved in the kidney protection mechanism of SFP/NGN NFs. In conclusion, our study confirmed that SFP/NGN NFs are candidates for protection of cisplatin-induced AKI, which is worthy of further study.


Assuntos
Injúria Renal Aguda , Fibroínas , Nanofibras , Animais , Camundongos , DNA Mitocondrial/metabolismo , Cisplatino/toxicidade , Nucleotidiltransferases/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Peptídeos/farmacologia , Peptídeos/química
7.
Chem Commun (Camb) ; 59(45): 6893-6896, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199088

RESUMO

Herein we develop a Ni-catalyzed defluorinative cross-electrophile coupling of gem-difluoroalkenes with alkenyl electrophiles that allowed the generation of C(sp2)-C(sp2) bonds. The reaction provided various monofluoro 1,3-dienes with broad functional group compatibility and excellent stereoselectivity. Synthetic transformations and applications to the modification of complex compounds were also demonstrated.

8.
Mar Drugs ; 21(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827168

RESUMO

Antarctic krill (Euphausia superba) of the Euphausiidae family comprise one of the largest biomasses in the world and play a key role in the Antarctic marine ecosystem. However, the study of E. superba-derived microbes and their secondary metabolites has been limited. Chemical investigation of the secondary metabolites of the actinomycetes Nocardiopsis sp. LX-1 (in the family of Nocardiopsaceae), isolated from E. superba, combined with molecular networking, led to the identification of 16 compounds a-p (purple nodes in the molecular network) and the isolation of one new pyrroline, nocarpyrroline A (1), along with 11 known compounds 2-12. The structure of the new compound 1 was elucidated by extensive spectroscopic investigation. Compound 2 exhibited broad-spectrum antibacterial activities against A. hydrophila, D. chrysanthemi, C. terrigena, X. citri pv. malvacearum and antifungal activity against C. albicans in a conventional broth dilution assay. The positive control was ciprofloxacin with the MIC values of <0.024 µM, 0.39 µM, 0.39 µM, 0.39 µM, and 0.20 µM, respectively. Compound 1 and compounds 7, 10, and 11 displayed antifungal activities against F. fujikuroi and D. citri, respectively, in modified agar diffusion test. Prochloraz was used as positive control and showed the inhibition zone radius of 17 mm and 15 mm against F. fujikuroi and D. citri, respectively. All the annotated compounds a-p by molecular networking were first discovered from the genus Nocardiopsis. Nocarpyrroline A (1) features an unprecedented 4,5-dihydro-pyrrole-2-carbonitrile substructure, and it is the first pyrroline isolated from the genus Nocardiopsis. This study further demonstrated the guiding significance of molecular networking in the research of microbial secondary metabolites.


Assuntos
Actinobacteria , Euphausiacea , Animais , Nocardiopsis , Euphausiacea/química , Actinomyces , Antifúngicos , Ecossistema , Pirróis , Regiões Antárticas
9.
Mol Pharm ; 20(2): 1189-1201, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647568

RESUMO

Excessive acetaminophen (APAP) induces excess reactive oxygen species (ROS), leading to liver damage. Pterostilbene (PTE) has excellent antioxidant and anti-inflammatory activities, but poor solubility limits its biological activity. In this study, we prepared PTE-loaded Soluplus/poloxamer 188 mixed micelles (PTE-MMs), and the protective mechanism against APAP-induced liver injury was investigated. In vitro results showed that PTE-MMs protected H2O2-induced HepG2 cell proliferation inhibition, ROS accumulation, and mitochondrial membrane potential destruction. Immunofluorescence results indicated that PTE-MMs significantly inhibited H2O2-induced DNA damage and cGAS-STING pathway activation. For in vivo protection studies, PTE-MMs (25 and 50 mg/kg) were administered orally for 5 days, followed by APAP (300 mg/kg). The results showed that APAP significantly induced injury in liver histopathology as well as an increase in serum aspartate aminotransferase and alanine aminotransferase levels. Moreover, the above characteristics of APAP-induced acute liver injury were inhibited by PTE-MMs. In addition, APAP-induced changes in the activities of antioxidant enzymes such as SOD and GSH in liver tissue were also inhibited by PTE-MMs. Immunohistochemical results showed that PTE-MMs inhibited APAP-induced DNA damage and cGAS-STING pathway activation in liver tissues. For in vivo therapeutic effect study, mice were first given APAP (300 mg/kg), followed by oral administration of PTE-MMs (50 mg/kg) for 3 days. The results showed that PTE-MMs exhibited promising therapeutic effects on APAP-induced acute liver injury. In conclusion, our study shows that the Soluplus/poloxamer 188 MM system has the potential to enhance the biological activity of PTE in the protection and therapeutic of liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/toxicidade , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Micelas , Estresse Oxidativo , Poloxâmero , Espécies Reativas de Oxigênio/metabolismo
10.
Mol Pharm ; 20(1): 136-146, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326450

RESUMO

Acute kidney injury (AKI) is the most common side effect of the anti-cancer drug cisplatin, and currently, no effective preventive measures are available in clinical practice. Oxidative stress and DNA damage mechanisms may be involved in cisplatin-induced AKI. In this study, we prepared Kolliphor HS15-based myricetin-loaded (HS15-Myr) nanomicelles and explored the mechanism of protection against cisplatin-induced AKI. In vitro results showed that the HS15-Myr nanomicelles enhanced the antioxidant activity of myricetin (Myr) and inhibited cisplatin-induced proliferation inhibition of HK-2 cells. Moreover, the HS15-Myr nanomicelles inhibited cisplatin-induced reactive oxygen species accumulation, mitochondrial membrane potential reduction, and DNA damage, which might be related to the inhibition of the cyclic GMP-AMP synthase (cGAS)─stimulating interferon gene (STING) signaling pathway. In vivo results in mice showed that the significant reductions in body weight and renal indices and the increased blood urea nitrogen and serum creatinine levels induced by cisplatin could be significantly reversed by pretreating with the HS15-Myr nanomicelles. Furthermore, nanomicelle pretreatment significantly altered the activities of antioxidant enzymes (e.g., GSH, MDA, and SOD) induced by cisplatin. In addition, cisplatin-induced inflammatory responses in mouse kidney tissue were found to be inhibited by pretreatment with HS15-Myr nanomicelles, such as IL-1ß and TNF-α expression. The nanomicelles also significantly inhibited cisplatin-induced activation of the DNA damage-cGAS-STING pathway in kidney tissues. Together, our findings suggest that Myr-loaded nanomicelles are potential nephroprotective drugs.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Camundongos , Cisplatino/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Transdução de Sinais , Antioxidantes/uso terapêutico , Dano ao DNA , Nucleotidiltransferases/farmacologia , Nucleotidiltransferases/uso terapêutico , Rim
11.
Sci Adv ; 8(49): eabq8596, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490351

RESUMO

Radical-mediated 1,2-difunctionalization of olefins is a well-established synthetic technique widely used in the rapid construction of structurally diverse molecular entities. However, radical-mediated 1,3-difunctionalization reactions are rare, and the substrates are generally limited to strained skeletons. Here, we report a practical approach for 1,3-difunctionalization of available ß,γ-unsaturated ketones via a radical cascade process including visible light-irradiated radical addition, thermodynamic stability-driven 1,2-carbonyl migration from unactivated all-carbon quaternary center, and terminal C-radical varied transformations. Various highly functionalized alkyl skeletons with different valuable functional groups at positions 1 and 3 and the carbonyl group at position 2 have been synthesized through a radical chain pathway or Cu-catalyzed Ritter-type reaction. Moreover, this protocol provides a real case of diversity-oriented radical rearrangement for drug discovery. We identified a previously unknown chemotype of dual inhibitors for hypoxia-inducible factor (HIF) and WNT signaling pathways from products. These small-molecule inhibitors could suppress HIF and WNT signaling-dependent HCT116 cell growth in 2D and 3D culture systems.

12.
Int J Biol Macromol ; 223(Pt A): 1083-1093, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36372101

RESUMO

Fucoidan (FU) is a natural sulfated polysaccharide with certain biological activity and has been shown to be an excellent nano-delivery material. In this study, ferulic acid (FA)-loaded FU nanoparticles (FA/FU NPs) were prepared and their nephroprotective mechanism was investigated. With a particle size of 158.6 ± 4.5 nm, FA/FU NPs increased the antioxidant activity of FA in vitro, possibly related to the increased dispersity of FA. In vitro results demonstrated that FA/FU NPs significantly protected human renal proximal tubule (HK-2) cells from cisplatin-induced damage, possibly by suppressing cisplatin-induced DNA damage and activating the cGAS-STING pathway. Furthermore, in vivo experiments confirmed that FA/FU NPs protected mice from cisplatin-induced acute kidney injury (AKI). Mechanistic studies confirmed that FA/FU NPs exerted nephroprotective effects by reducing MDA activity and increasing GSH and SOD activity. Our results demonstrated the potential of FU for delivering poorly soluble drug FA and protecting against cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda , Nanopartículas , Camundongos , Humanos , Animais , Cisplatino/efeitos adversos , Ácidos Cumáricos/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Polissacarídeos/efeitos adversos
13.
Int J Pharm ; 626: 122161, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058409

RESUMO

Silk fibroin (SF) is a natural polymeric biomaterial widely used in the preparation of drug delivery systems. Herein, silk fibroin peptide (SFP) was self-assembled into nanofibers, encapsulated a poorly water-soluble drug baicalein (SFP/BA NFs), and then used to protect against cisplatin-induced acute kidney injury (AKI). Specifically, the SFP/BA NFs significantly enhanced the aqueous dispersity, storage stability, and in vitro antioxidant activity of BA. SFP/BA NFs increased the drug uptake and localization to mitochondria. In vitro results demonstrated that SFP/BA NFs can relieve the cisplatin-induced HK-2 cell damage, and inhibit the cisplatin-induced accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) disruption. Mechanism studies demonstrated that SFP/BA NFs may exert nephroprotective effects by inhibiting both the cisplatin-induced DNA damage and the cGAS/STING pathway activation. In vivo results showed that cisplatin treatment resulted in decreased body weight, increased serum creatinine (SCr), and increased blood urea nitrogen (BUN) levels, while SFP/BA NFs reversed the above symptoms. Furthermore, SFP/BA NFs reversed the cisplatin-induced abnormal changes of antioxidant enzymes (e.g., SOD and GSH), and inhibited the cisplatin-induced DNA damage as well as the activation of cGAS/TING. Above all, our results revealed the potential of SFP/BA NFs to protect against cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda , Fibroínas , Nanofibras , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Materiais Biocompatíveis/uso terapêutico , Cisplatino/farmacologia , Creatinina , Fibroínas/química , Flavanonas , Humanos , Rim/metabolismo , Nanofibras/química , Nucleotidiltransferases/farmacologia , Nucleotidiltransferases/uso terapêutico , Peptídeos/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase , Tolnaftato/efeitos adversos , Água/farmacologia
14.
Mar Drugs ; 20(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621985

RESUMO

With the increasingly serious antimicrobial resistance, discovering novel antibiotics has grown impendency. The Antarctic abundant microbial resources, especially fungi, can produce unique bioactive compounds for adapting to the hostile environment. In this study, three Antarctic fungi, Chrysosporium sp. HSXSD-11-1, Cladosporium sp. HSXSD-12 and Acrostalagmus luteoalbus CH-6, were found to have the potential to produce antimicrobial compounds. Furthermore, the crude extracts of CH-6 displayed the strongest antimicrobial activities with 72.3-84.8% growth inhibition against C. albicans and Aeromonas salmonicida. The secondary metabolites of CH-6 were researched by bioactivity tracking combined with molecular networking and led to the isolation of two new α-pyrones, acrostalapyrones A (1) and B (2), along with one known analog (3), and three known indole diketopiperazines (4-6). The absolute configurations of 1 and 2 were identified through modified Mosher's method. Compounds 4 and 6 showed strong antimicrobial activities. Remarkably, the antibacterial activity of 6 against A. salmonicida displayed two times higher than that of the positive drug Ciprofloxacin. This is the first report to discover α-pyrones from the genus Acrostalagmus, and the significant antimicrobial activities of 4 and 6 against C. albicans and A. salmonicida. This study further demonstrates the great potential of Antarctic fungi in the development of new compounds and antibiotics.


Assuntos
Ascomicetos , Pironas , Regiões Antárticas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Ascomicetos/metabolismo
15.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408869

RESUMO

Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene, which is involved in the RAS/MAPK cell signaling transduction process. SHP2 has been shown to contribute to the progression of various cancers and is emerging as an important target for anti-tumor drug research. However, past efforts to develop SHP2 inhibitors into drugs have been unsuccessful owing to the positively charged nature of the active site pocket tending to bind negatively charged groups that are usually non-drug-like. Here, a series of uncharged pyrazoline derivatives were designed and developed as new SHP2 inhibitors using a structure-based strategy. Compound 4o, which exhibited the strongest SHP2 inhibitory activity, bound directly to the catalytic domain of SHP2 in a competitive manner through multiple hydrogen bonds. Compound 4o affected the RAS/MAPK signaling pathway by inhibiting SHP2, and subsequently induced apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. Notably, the oral administration of compound 4o in large doses showed no obvious toxicity. In summary, our findings provide a basis for the further development of compound 4o as a safe, effective and anti-tumor SHP2 inhibitor.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais
16.
Biomed Pharmacother ; 147: 112615, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35026488

RESUMO

Sepsis-induced acute kidney injury (AKI) and acute lung injury (ALI) have high morbidity and mortality, with no effective clinically available drugs. Anti-inflammation is effective strategy in the therapy of AKI and ALI. NF-κB is a target for the development of anti­inflammatory agents. The purpose of the study is to evaluate the effect of 270, self-developed NF-κB inhibitor, in LPS-induced AKI and ALI. LPS-induced macrophages were used to examine the anti-inflammation activity of 270 in vitro. Sepsis-induced AKI and ALI mice models were established by intraperitoneal injection of LPS (10 mg/kg) for 24 h. Oral administration 270 for 14 days before LPS stimulation. Plasma, kidney and lung tissues were collected and used for histopathology, biochemical assay, ELISA, RT-PCR, and western blot analyses. In vitro, we showed that 270 suppressed the inflammation response in LPS-induced RAW 264.7 macrophages and bone marrow derived macrophages. In vivo, we found that 270 ameliorated LPS-induced AKI and ALI, as evidenced by improving various pathological changes, reducing the expression of pro-inflammation genes, blocking the activation of NF-κB and JNK pathways, attenuating the elevated myeloperoxidase (MPO) activity and malondialdehyde (MDA) content, ameliorating the activated ER stress, reversing the inhibition effect on autophagy in kidney and lung tissues, and alleviating the enhanced plasma level of creatinine (Crea), blood urea nitrogen (BUN) and pro-inflammation cytokines. Our investigations provides evidence that NF-κB inhibitor 270 is a potential drug that against LPS-induced AKI and ALI in the future.


Assuntos
Injúria Renal Aguda/prevenção & controle , Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7/efeitos dos fármacos
17.
Org Lett ; 23(17): 6612-6616, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34387992

RESUMO

A nickel-catalyzed cross-coupling of allylic alkyl ethers with organoboron compounds through the cleavage of the inert C(sp3)-O(alkyl) bonds is described. Several types of allylic alkyl ethers can be coupled with various boronic acids or their derivatives to give the corresponding products in good to excellent yields with wide functional group tolerance and excellent regioselectivity. The gram-scale reaction and late-stage modification of biologically active compounds further prove the practicality of this synthetic method.

18.
J Med Chem ; 64(15): 10581-10605, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34313432

RESUMO

The development of multitarget-directed ligands (MTDLs) has become a widely focused research topic, but rational design remains as an enormous challenge. This paper reviews and discusses the design strategy of incorporating the second activity into an existing single-active ligand. If the binding sites of both targets share similar endogenous substrates, MTDLs can be designed by merging two lead compounds with similar functional groups. If the binding sites are large or adjacent to the solution, two key pharmacophores can be fused directly. If the binding regions are small and deep inside the proteins, the linked-pharmacophore strategy might be the only way. The added pharmacophores of second targets should not affect the binding mode of the original ones. Moreover, the inhibitory activities of the two targets need to be adjusted to achieve an optimal ratio.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular
19.
Front Microbiol ; 12: 688202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177873

RESUMO

The fungal strains Pseudogymnoascus are a kind of psychrophilic pathogenic fungi that are ubiquitously distributed in Antarctica, while the studies of their secondary metabolites are infrequent. Systematic research of the metabolites of the fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of six new tremulane sesquiterpenoids pseudotremulanes A-F (1-6), combined with one known analog 11,12-epoxy-12ß-hydroxy-1-tremulen-5-one (7), and five known steroids (8-12). The absolute configurations of the new compounds (1-6) were elucidated by their ECD spectra and ECD calculations. Compounds 1-7 were proved to be isomeride structures with the same chemical formula. Compounds 1/2, 3/4, 1/4, and 2/3 were identified as four pairs of epimerides at the locations of C-3, C-3, C-9, and C-9, respectively. Compounds 8 and 9 exhibited cytotoxic activities against human breast cancer (MDA-MB-231), colorectal cancer (HCT116), and hepatoma (HepG2) cell lines. Compounds 9 and 10 also showed antibacterial activities against marine fouling bacteria Aeromonas salmonicida. This is the first time to find terpenoids and steroids in the fungal genus Pseudogymnoascus.

20.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946466

RESUMO

The species Pseudogymnoascus is known as a psychrophilic pathogenic fungus which is ubiquitously distributed in Antarctica. While the studies of its secondary metabolites are infrequent. Systematic research of the metabolites of the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of one new pyridine derivative, 4-(2-methoxycarbonyl-ethyl)-pyridine-2-carboxylic acid methyl ester (1), together with one pyrimidine, thymine (2), and eight diketopiperazines, cyclo-(dehydroAla-l-Val) (3), cyclo-(dehydroAla-l-Ile) (4), cyclo-(dehydroAla-l-Leu) (5), cyclo-(dehydroAla-l-Phe) (6), cyclo-(l-Val-l-Phe) (7), cyclo-(l-Leu-l-Phe) (8), cyclo-(l-Trp-l-Ile) (9) and cyclo-(l-Trp-l-Phe) (10). The structures of these compounds were established by extensive spectroscopic investigation, as well as by detailed comparison with literature data. This is the first report to discover pyridine, pyrimidine and diketopiperazines from the genus of Pseudogymnoascus.


Assuntos
Ascomicetos/química , Compostos de Nitrogênio/análise , Regiões Antárticas , Ascomicetos/metabolismo , Produtos Biológicos/química , Estrutura Molecular , Compostos de Nitrogênio/química , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...